I-SPY2 Trial

Lack of background parenchymal enhancement suppression in breast MRI during neoadjuvant chemotherapy may be associated with inferior treatment response in hormone receptor positive breast cancer

Natsuko Onishi¹, Wen Li¹, David C. Newitt¹, Roy Harnish¹, Fredrik Strand¹, Alex Nguyen¹, Vignesh Arasu¹, Jessica Gibbs¹, Ella F. Jones¹, Lisa J. Wilmes¹, Laura S. Sit¹, Christina Yau¹, Thelma Brown², A. Jo Chien¹, Bonnie N. Joe¹, Elissa Price¹, Mohammad Eghtedari³, Erica Stringer-Reasor⁴, Stefanie Woodard⁴, Kathryn W. Zamora⁴ Douglas Yee⁵, Michael Nelson⁵, An Church⁵, Patrick Bolan⁵, Kathy S. Albain⁶, Theresa Kuritza⁶, Kevin Morley⁸, Angela DeMichele⁹, Mark Rosen⁹, Elizabeth S. McDonald⁹, Rita Nanda¹⁰, Hiroyuki Abe¹⁰, Deepa Sheth¹⁰, Nick Gruszauskas¹⁰, Claudine Isaacs¹¹, Érin Crane¹¹, Julie E. Lang¹², Janice Lu¹², Janice Lu¹², Pulin Sheth¹⁴, Alina Hovanessian-Larsen¹⁴, Alina Tudorica¹⁴, Heather S. Han¹⁵, Bethany Niell¹⁵, Kevin Kalinsky¹⁶, Richard Ha¹⁶, Raiph Wynn¹⁶, Tara Sanft¹⁷, Jane Meisel¹⁸, Mary Newell¹⁸, Michael Cohen¹⁸, Puneet Sharma¹⁸, Donald W. Northfelt¹⁹, Marina Giurescu¹⁹, Kirsten K. Edmiston²⁰, Elise Berman²⁰, Rachel Yung²¹, Constance Lehman²¹, Savannah Partridge²¹, Rebecca K. Viscusi²², Marisa H. Borders²², Debasish Tripathy²³, Wei Yang²³, Basak Dogan²³, W. Fraser Symmans²³, Wei Yang²³, Basak Dogan²³, W. Fraser Symmans²³, Mei Yang²³, Basak Dogan²³, W. Fraser Symmans²⁴, Jane Perlmutter²⁷, Smita M. Asare²⁸, Hope S. Rugo¹, Laura J. van't Veer¹, Donald A. Berry²⁹, Laura J. Esserman¹, Nola M. Hylton¹

University; ¹⁷Yale Cancer Center; ¹⁸Emory University; ¹⁹Mayo Clinic, Scottsdale; ²⁰Inova Health System; ²¹University of Texas, Southwestern; ²²University of Texas, Southwestern; ²³University of Texas, M.D. Anderson Cancer Center; ²⁴University of Texas, Southwestern; ²⁴University of Texas, M.D. Anderson Cancer Center; ²⁴University of Texas, Southwestern; ²⁴University of Texas, Southwe

Background

Background Parenchymal Enhancement (BPE) in Breast MRI

- Contrast enhancement of "normal" fibroglandular tissue
- Symmetric degree and distribution for both breasts
- Visual assessment in BI-RADS (4-point scale)
- Quantitative measurement in contralateral breast to avoid including tumor area
- Associated with breast cancer survival¹, treatment response to neoadjuvant chemotherapy (NAC)^{2,3} and future breast cancer risk⁴

Minimal BPE

Mild BPF

Marked BPI Radiographics 2014; 34: 234–47

BPE & Hormonal status

Hormonal status significantly affects the degree of BPE, potentially due to the association with mammary vascularity and activity^{5–9}.

- menstrual cycle
- lactation
- menopause
- hormone replacement therapy
- hormone therapy (tamoxifen, aromatase inhibitors) etc.

Suppression of BPE during NAC

In most patients undergoing NAC, BPE may be suppressed by the nonspecific anti-proliferative effects of chemotherapy on normal breasts and/or ovaries^{5,10}.

However, some patients exhibit equivalent or even stronger BPE post-NAC compared to pre-NAC.

Chemotherapy production **Ovaries**

Breast J. 2012 Dec; 18(6) 527-534

Hypothesis

We hypothesized that non-suppressed BPE in post-NAC may be associated with inferior treatment response.

Purpose

This study aimed to investigate the association between BPE suppression and treatment response as defined by pathologic complete response (pCR).

I-SPY 2 TRIAL

I-SPY 2: A multicenter, phase 2 trial using response-adaptive randomization within biomarker subtypes to evaluate novel agents as neoadjuvant therapy for high-risk breast cancer

Inclusion Criteria: Tumor Size ≥ 2.5cm; HR+HER2– MammaPrint (MP) high risk, HR–HER2– or HER2+

Goal: To identify (graduate) regimens that have $\geq 85\%$ predictive probability of success in a 300-patient phase 3 neoadjuvant trial defined by HR and HER2 status, and MP

Study schema: 20% of patients are randomized to the shared control arm. Among experimental arms (up to four) adaptive randomization is based on probabilities of achieving pCR within a given subtype for each agent.

Methods

Patients

Dynamic enhanced MRIs at four time points during NAC

- T0: baseline
- T1: early-treatment
- T2: inter-regimen
- T3: pre-surgery

BPE0, BPE1, BPE2 and BPE3 \rightarrow BPE at each treatment time point

Study cohort

- the analysis

The right drug, the right patient, the right time... now.

Primary Endpoint: Pathologic complete response (pCR)

Regimens may leave the trial for one of four reasons: Futility (< 10%) probability of success); Maximum sample size accrual (with probability of success \geq 10% and < 85%); Graduation (\geq 85% predictive probability of success); or as recommended by the independent DSMB

To date: 11 experimental regimens have been evaluated for efficacy

988 patients from 9 completed/graduated drug arms with pathological outcome

MRIs with poor image quality and poor BPE calculation were excluded from

Two subgroups based on hormone receptor status (HR+, HR-)

Methods

Automated Quantitative Measurement of BPE

- Differentiation of fibroglandular tissue from fat
- Mean early (~150s post-contrast injection) percent enhancement of the central 50% of the axial slices

BPE Suppression at T1, T2 or T3

Binary indicator of whether or not BPE was suppressed in comparison with T0

Quality Score & High-quality Set

- Quality of automated differentiation of fibroglandular tissue
- Visual assessment by a radiologist using three point scoring (score 2 = good, score 1 = adequate, score 0 = poor)
- High-quality set: $\Delta BPE0_1$, $\Delta BPE0_2$, and $\Delta BPE0_3$ calculated from BPE0, BPE1, BPE2 and BPE3 with guality score 2 or 1

Statistical Analysis

Chi-squared test or Fisher's exact test was used to examine the association between BPE suppression and pCR

Results

Study Cohort (High-quality set)

Time points	Analyzable BPE			Unanalyzable	BPE not	High-guality
	Quality score 2	Quality score 1	Quality score 0	BPE [†]	available [‡]	set of %∆BPE*
T0 (BPE0)	104	519	347	18	2	
T1 (BPE1)	78	475	385	19	33	479 (48)
T2 (BPE2)	75	439	369	22	85	437 (44)
T3 (BPE3)	65	436	375	14	100	415 (42)

Data represent the number of exams. Data in parentheses are percentages of 988. † Exams where automated segmentation failed to accurately define contralateral breast ‡ MRI not scanned or rejected by I-SPY2 Imaging Core Lab

- * % ABPE0 1, % ABPE0 2, and % ABPE0 3 calculated from BPE0, BPE1, BPE2 and BPE3 with quality score 2 or 1

Fully automatic segmentation of contralateral breast

 $\Delta BPE < 0 \rightarrow Suppressed$ %∆BPE ≥ 0 → Non-suppressed

Results

HR+	pCR rate (%)	No. of pCR patients	No. of non-pCR patients	Tota No. patier					
HR+ cohort (n = 536)									
	22.8	122	414	536					
HR+ cohort in High-q	uality set								
BPE at T1 (n = 272)									
Suppressed	23.4	47	154	201					
Non-suppressed	19.7	14	57	71					
BPE at T2 (n = 251)									
Suppressed	28.7	56	139	195					
Non-suppressed	12.5	7	49	56					
BPE at T3 (n = 238)									
Suppressed	27.0	53	143	196					
Non-suppressed	9.5	4	38	42					
HR–	pCR rate (%)	No. of pCR patients	No. of non-pCR patients	Tota No. patier					
HR- cohort (n = 452)									
	44.7	202	250	452					
HR- cohort in High-quality set									
BPE at T1 (n = 207)									
Suppressed	44.4	68	85	153					

Cappitocta		00	00	100		
Non-suppressed	42.6	23	31	54		
BPE at T2 (n = 186)						
Suppressed	50.3	73	72	145		
Non-suppressed	39.0	16	25	41		
BPE at T3 (n = 177)						
Suppressed	51.1	70	67	137		
Non-suppressed	40.0	16	24	40		

Conclusions

- Our results confirmed our hypothesis in HR+ breast cancer: non-suppressed BPE at T2 and T3 showed association with inferior treatment response.
- The contrasting results in HR+ and HR– cohort may reflect the influence of functional hormone suppression on treatment response.
- About half of the exams were excluded from BPE analysis. Improvements in image quality and automated image processing may increase yield.

Acknowledgements:

- With grant support from NIH U01 CA225427 and NIH R01 CA132870.
- With support from Quantum Leap Healthcare Collaborative, FNIH, NCI (Grant 28XS197 P-0518835), Safeway, an Albertsons Company, William K. Bowes, Jr. Foundation, Breast Cancer Research Foundation, UCSF, GMU, the Biomarkers Consortium, Salesforce, OpenClinica, Formedix, Natera, Hologic Inc., TGen, Illumina, CCS Associates Berry Consultants, Breast Cancer Research – Atwater Trust, Stand up to Cancer, California Breast Cancer Research Program, and Give Breast Cancer the Boot, IQVIA, Genentech, Amgen, Pfizer, Merck, Seattle Genetics, Daiichi Sankyo, AstraZeneca, Dynavax Technologies, Puma Biotechnology, AbbVie, Madrigal Pharmaceuticals (formerly Synta Pharmaceuticals), Plexxikon, Regeneron and Agendia. Sincere thanks to our DSMB, Independent Agent Selection Committee, our patients, advocates and investigators.

References

1. Eur Radiol 28:4705–4716, 2018 2. Eur Radiol 26:1590–1596, 2016 3. Transl Oncol 8:204–209, 2015 4. J Clin Oncol JCO1800378 2019 5. Radiographics 34:234–247, 2014 6. Radiology 203:137–144, 1997 7. Radiology 203:145–149, 1997 8. Breast J 11:236–241 2005 **9.** AJR Am J Roentgenol 204:669–673, 2015 **10.** Radiology 277:687–696, 2015

