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Background: Pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) is strongly associated with
favorable outcome. We examined the utility of serial circulating tumor DNA (ctDNA) testing for predicting pCR and
risk of metastatic recurrence.
Patients and methods: Cell-free DNA (cfDNA) was isolated from 291 plasma samples of 84 high-risk early breast cancer
patients treated in the neoadjuvant I-SPY 2 TRIAL with standard NAC alone or combined with MK-2206 (AKT inhibitor)
treatment. Blood was collected at pretreatment (T0), 3 weeks after initiation of paclitaxel (T1), between paclitaxel and
anthracycline regimens (T2), or prior to surgery (T3). A personalized ctDNA test was designed to detect up to 16 patient-
specific mutations (from whole-exome sequencing of pretreatment tumor) in cfDNA by ultra-deep sequencing. The
median follow-up time for survival analysis was 4.8 years.
Results: At T0, 61 of 84 (73%) patients were ctDNA positive, which decreased over time (T1: 35%; T2: 14%; and T3: 9%).
Patients who remained ctDNA positive at T1 were significantly more likely to have residual disease after NAC (83% non-
pCR) compared with those who cleared ctDNA (52% non-pCR; odds ratio 4.33, P ¼ 0.012). After NAC, all patients who
achieved pCR were ctDNA negative (n ¼ 17, 100%). For those who did not achieve pCR (n ¼ 43), ctDNA-positive
patients (14%) had a significantly increased risk of metastatic recurrence [hazard ratio (HR) 10.4; 95% confidence
interval (CI) 2.3-46.6]; interestingly, patients who did not achieve pCR but were ctDNA negative (86%) had excellent
outcome, similar to those who achieved pCR (HR 1.4; 95% CI 0.15-13.5).
Conclusions: Lack of ctDNA clearance was a significant predictor of poor response and metastatic recurrence, while
clearance was associated with improved survival even in patients who did not achieve pCR. Personalized monitoring
of ctDNA during NAC of high-risk early breast cancer may aid in real-time assessment of treatment response and
help fine-tune pCR as a surrogate endpoint of survival.
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INTRODUCTION

Circulating tumor ctDNA (ctDNA) in blood offers a minimally
invasive approach for disease monitoring and evaluation of
response to therapy.1-3 Findings from recent clinical studies
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have shown that ctDNA may play a role in detecting mini-
mal residual disease and emerging therapy resistance, that
is, molecular relapse in early stage breast cancers,4-7 as well
as in monitoring of disease progression in patients with
advanced breast cancer.8-10 However, it is not yet known if
failure to clear ctDNA during therapy could provide guid-
ance for escalation of treatment to prevent early disease
recurrence.11

Neoadjuvant chemotherapy (NAC) has become a
standard-of-care for patients with locally advanced breast
cancer.12 First, NAC provides a unique opportunity for real-
time monitoring of tumor response and evaluation of drug
efficacy.13-15 Second, NAC may downstage tumors and thus
improve chances of breast-conserving surgery.12,16,17 Third,
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response to NAC provides prognostic information which can
supplement those derived from standard clinicopathologic
characteristics of the primary tumor, such as subtype, nodal
status, and grade.12,16-20

Pooled analysis by Cortazar and colleagues21 has shown
that patients who achieved a pathologic complete response
(pCR, or the absence of residual cancer in the breast and
lymph nodes after NAC) have significant survival advantage
over those who did not. Standard NAC alone or in combi-
nation with other agents has resulted in pCR for 10%-50%
of patients depending on subtype.21 Data from the I-SPY 2
TRIAL, a multicenter phase II trial that evaluates investiga-
tional drugs in combination with standard NAC (paclitaxel
followed by anthracycline treatment),22 have shown that
pCR in women with molecularly high-risk stage II or III
tumors, whether from standard or targeted therapies,
unequivocally conferred a survival advantage [hazard ratio
(HR) of 0.2].23

While pCR accurately identifies patients with low risk of
relapse, studies have shown that predicting early metastatic
recurrence in those with residual disease (non-pCR) is less
robust.21,23 For example, survival analysis in the I-SPY 2
TRIAL (median follow-up of 3.8 years) showed that the
3-year distant disease-free survival (DRFS) of patients who
achieved pCR was 95%.23 Among non-pCR patients, 22% of
experienced metastatic recurrence. In this study, we eval-
uated the potential role of ctDNA as a biomarker for
monitoring of response to NAC and assessed the additive
value of ctDNA to further stratify patients with residual
disease to predict early metastatic recurrence. We hypoth-
esized that early changes in ctDNA are predictive of
response to NAC and that ctDNA dynamics during NAC as
well as ctDNA status (positive versus negative) at each time
point are associated with patient outcomes. To address
these hypotheses, we performed a correlative study in the
I-SPY 2 TRIAL to detect ctDNA in serial plasma samples
collected before, during, and after NAC.24 We used a
previously analytically validated personalized ctDNA test
composed of a panel of up to 16 most clonal somatic
variants present in the pretreatment tumor.10,25-27 The test
involves multiplex polymerase chain reaction amplification
followed by ultra-deep sequencing to detect tumor-specific
mutations (i.e. ctDNA) in cell-free DNA (cfDNA). This
approach enables more accurate monitoring of disease
burden than prefixed driver mutation panels, as each test
reflects tumor heterogeneity at the individual patient
level.5,8,28

PATIENTS AND METHODS

Patients

We performed a retrospective ancillary ctDNA study on
prospectively collected samples from high-risk early breast
cancer patients enrolled in the multicenter neoadjuvant
I-SPY 2 TRIAL (NCT01042379). Women with �2.5-cm stage
II/III breast cancer were eligible. Patients were screened for
metastatic disease by imaging (computed tomography or
positron emission tomography) prior to enrollment, and
230 https://doi.org/10.1016/j.annonc.2020.11.007
those with de novo metastatic disease were excluded.
Restaging scans were not performed after NAC prior to
surgery. Eligibility was limited to patients with a Mamma
Print high score, and thus the trial was enriched for those
with increased risk of metastatic recurrence within 5 years
after diagnosis. Patients received standard NAC combined
with MK-2206 (AKT inhibitor) or standard NAC alone.
Detailed descriptions of the design, eligibility, and study
assessments in the I-SPY 2 TRIAL have been reported pre-
viously.22,29 Institutional Review Boards at all participating
institutions approved the protocol. All patients signed
informed consent to allow research on their biospecimen
samples.
ctDNA analysis

Detailed description of the clinical samples and the
methods for ctDNA analysis26,27,30 (supplementary
Figures S1-S3 and supplementary Tables S1-S3, available
at https://doi.org/10.1016/j.annonc.2020.11.007) are found
in the supplementary Methods, available at https://doi.
org/10.1016/j.annonc.2020.11.007.
Statistical analysis

To determine the cutoff for ctDNA positivity, a large set of
negative control samples (w1000) was preprocessed to
build a background error model. For each target variant
identified in the plasma, a confidence score was calculated
based on the depth of read for mutant and reference
alleles.25 In addition, simulation studies were performed as
previously described10,26,27 to determine limits of detection
and quality control thresholds for stringent assessment
of ctDNA results (see supplementary Methods, available
at https://doi.org/10.1016/j.annonc.2020.11.007 and
supplementary Figures S4 and S5, available at https://doi.
org/10.1016/j.annonc.2020.11.007). A plasma sample with
at least two variants with a confidence score above a pre-
defined threshold (0.97) was defined as ctDNA positive.

Logistic regression was used to assess association be-
tween pCR and ctDNA clearance. Survival curves were
generated by KaplaneMeier analysis and compared using
log-rank test. Cox regression analysis was used to estimate
HR and 95% confidence interval (CI). Survival data were
available for 75 of the 84 patients. Detailed description of
the study design and the statistical methods can be found in
the supplementary Methods, available at https://doi.org/
10.1016/j.annonc.2020.11.007.

RESULTS

ctDNA analysis in I-SPY 2 TRIAL patients

This ctDNA study was performed retrospectively on samples
collected from I-SPY 2 TRIAL patients who received standard
NAC alone or combined with MK-2206 (AKT inhibitor)
treatment (Figure 1A). Primary tumor and matched normal
samples for whole-exome sequencing were available for 90
patients (Figure 1B and C and supplementary Figure S1,
available at https://doi.org/10.1016/j.annonc.2020.11.007).
Volume 32 - Issue 2 - 2021
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Of these, six were excluded due to poor-quality sequencing
data, resulting in an analytic cohort of 84 patients
(supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2020.11.007). Whole-exome sequencing
detected a mean of 181 mutations in the 84 untreated
primary tumor tissue analyzed (median 159; range 32-772;
supplementary Table S2, available at https://doi.org/10.
1016/j.annonc.2020.11.007). cfDNA was isolated from
plasma samples collected from pretreatment (T0), 3 weeks
after initiation of treatment (T1), between paclitaxel and
anthracycline regimens (T2), and after NAC prior to surgery
(T3) (Figure 1A and supplementary Figure S2, available at
https://doi.org/10.1016/j.annonc.2020.11.007). From the
list of variants derived from whole-exome sequencing, a
unique personalized panel consisting of up to 16 highly
ranked somatic mutations were selected (median 16; range
12-16). Multiplex polymerase chain reaction assays were
designed and used to interrogate cfDNA for the presence of
these mutations (Figure 1C, supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2020.11.007,
and supplementary Methods, available at https://doi.org/
10.1016/j.annonc.2020.11.007). Amplicons were subjected
to ultra-deep sequencing to detect ctDNA (supplementary
Figure S3, available at https://doi.org/10.1016/j.annonc.
2020.11.007). ctDNA analysis was successfully performed
on 291 (87%) of the potential 336 total plasma samples (84
patients � 4 time points). Samples with at least two
detectable somatic variants were considered ctDNA positive
(supplementary Figures S4 and S5, available at https://doi.
org/10.1016/j.annonc.2020.11.007).10,25-27

Of the 84 patients, 35% were hormone receptor-positive
(HRþ)/human epidermal growth factor receptor 2-negative
(HER2e), 23% HER2þ, and 43% triple-negative breast can-
cers (TNBCs); 30% had T3 or T4 tumors; 53% were node
negative and 61% were considered to be MammaPrint High
2 (ultra-high risk; supplementary Table S1, available at
https://doi.org/10.1016/j.annonc.2020.11.007). There were
no significant differences in the clinicopathologic charac-
teristics between patients who were excluded (n ¼ 67) and
those who were included in the study (n ¼ 84).
Baseline ctDNA is associated with tumor burden and
aggressive phenotype

At pretreatment (T0), 73% of the patients had detectable
ctDNA (Figure 2A). ctDNA detection rates in patients who
received standard NAC (n ¼ 27, 73%) were similar to those
who received additional MK-2206 (n ¼ 57, 72%; Figure 2A
and supplementary Table S1, available at https://doi.org/
10.1016/j.annonc.2020.11.007). The proportion of ctDNA-
positive samples was significantly higher among HER2þ
(84%) and TNBC (86%) subtypes as compared with the
HRþ/HER2e (48%) subtype (P < 0.01; supplementary
(A) Diagram showing the study schema of the I-SPY 2 TRIAL. Prior to study entry, tum
epidermal growth factor receptor 2 status and MammaPrint scores. Blood samples a
after initiation of therapy; T2, between two treatment regimens [paclitaxel � MK-2206
surgery. (B) Flow chart showing patients and samples evaluated in the study and sampl
for ctDNA analysis. pCR, pathological complete response.

232 https://doi.org/10.1016/j.annonc.2020.11.007
Table S1, available at https://doi.org/10.1016/j.annonc.
2020.11.007 and Figure 2A and B). ctDNA positivity was
also associated with larger tumors (T3/T4, 91%, P ¼ 0.014)
but not with nodal status at the time of diagnosis. A
significantly higher proportion of MammaPrint High 2
patients were ctDNA positive (86%) compared with 52% in
MammaPrint High 1 (P < 0.01).

We also evaluated the absolute ctDNA levels (i.e. mean
tumor molecules per ml of plasma) in the different groups
stratified according to these same clinical variables and
observed the same trend. The mean tumor molecules per
ml in TNBC patients was significantly higher compared with
that of HRþ/HER2� patients (Figure 2C). Significantly
higher levels of ctDNA were also observed for clinical
T-stage T3/T4 versus T1/T2 and MammaPrint high 2 versus
high 1.

ctDNA positivity decreases with distinct dynamics during
NAC

In the population as a whole, ctDNA positivity decreased
during the course of NAC, from 73% before treatment (T0),
to 35% at 3 weeks (T1), to 14% at the inter-regimen time
point (T2), and down to 9% after NAC (T3) (Figure 3A).
Similarly, the absolute ctDNA levels decreased over time
(Figure 3B). Although, on average the ctDNA positivity
decreased with time, at the individual patient level, five
main patterns were observed. Figure 3C shows ctDNA
positivity as a function of time during treatment for 58 of
the 84 patients who had complete serial data available at all
four time points: Patients with undetectable ctDNA at T0
who remained undetectable at T3 (n ¼ 20, 34.5%); patients
who, respectively, cleared at T1 (n ¼ 20, 34.5%), at T2
(n ¼ 9, 15.5%), or at T3 (n ¼ 4, 6.9%); or patients who
remained ctDNA positive after NAC (T3) (n ¼ 5, 8.6%).

Clearance dynamics of ctDNA is associated with NAC
response

We evaluated ctDNA clearance as a predictor of response to
NAC. The rates for pCR across subtypes were 13.8%, 47.4%,
and 27.8% for HRþ/HER2e, HER2þ, and TNBC, respec-
tively. As much as 56 patients who were ctDNA positive at
T0 had a corresponding T1 plasma measurement
(Figure 4A), and of these, 29 (52%) remained ctDNA positive
at T1, 3 weeks after the initiation of treatment. As much as
83% of patients who did not clear their ctDNA at T1 had
residual disease at surgery (24/29 non-pCR) compared with
52% in patients who cleared ctDNA at T1 (14/27 non-pCR).
This association was significant (odds ratio 4.33, P ¼ 0.012,
adjusted for subtype and treatment received). Among the
39 non-pCR patients who had undetectable ctDNA after
NAC, 17 (43%) were ctDNA negative at baseline, 10 (26%)
cleared ctDNA by T1, and 12 (31%) cleared ctDNA by
or biopsy from each patient is analyzed to assess hormone receptor and human
re collected at the following time points: T0, baseline/pretreatment; T1, 3 weeks
and anthracycline (AC)]; and T3, after neoadjuvant chemotherapy (NAC) prior to

e performance at different quality control (QC) points. (C) Schema of the methods
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T2 or T3. The positive predictive value (PPV) of the test (for
predicting non-pCR) increased with time (Figure 4B).

Clinical events are frequent in patients with detectable
ctDNA

Survival data were available for 75 of the 84 patients, with a
median follow-up of 4.8 years (range 0.5-6.3 years). In this
period, 8 had local recurrences and 10 experienced distant
metastases, of whom 8 died (Figure 5A). Detectable ctDNA
in at least one time point was observed in 6 of the 8 pa-
tients (75%) with local recurrence, 9 of the 10 patients
(90%) who had distant recurrence, and in all 8 patients who
died (100%). Of note, a patient who experienced brain
metastasis did not have detectable ctDNA at all time points.

ctDNA dynamics is significantly associated with metastatic
recurrence

We examined whether ctDNA dynamic patterns (Figure 3C)
were associated with DRFS, the secondary endpoint of the
I-SPY 2 TRIAL. Of 58 patients with ctDNA data at all time
points, 54 had follow-up information. Patients who had
Volume 32 - Issue 2 - 2021
cleared ctDNA at T1, T2, or T3 (n ¼ 29) had similar risk of
metastatic recurrence compared with those who were
ctDNA negative at T0 (n ¼ 20; HR 2.1; 95% CI 0.22-20.2;
Figure 3D). Patients who did not clear ctDNA at T3 (n ¼ 5)
had a significantly higher risk of metastatic recurrence (HR
22.4; 95%, CI 2.5-201, P < 0.001).
ctDNA at T1, T2, and T3 but not T0 is associated with
increased risk of metastatic recurrence

Next, we examined whether ctDNA status (positive or
negative) at different time points was associated with DRFS
(supplementary Figure S6, available at https://doi.org/
10.1016/j.annonc.2020.11.007). At baseline (T0), ctDNA-
positive patients had increased risk of metastatic
recurrence, but this association did not reach statistical
significance (HR 4.11; 95% CI 0.52-32.4). By contrast, ctDNA
positivity at 3 weeks after initiation of therapy (T1; HR 4.5;
95% CI 1.2-17.4), between regimens (T2; HR 5.4; 95% CI 1.3-
22.5), and after NAC (T3; HR 11.5; 95% CI 2.9-46.1) was
significantly associated with increased risk of metastatic
recurrence.
https://doi.org/10.1016/j.annonc.2020.11.007 233
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Clearance of ctDNA after NAC (T3) is associated with
improved survival

Patients were stratified according to pCR and ctDNA status
after NAC (n ¼ 60). The proportion of subtypes varied
across groups based on pCR and ctDNA positivity (Fisher’s
exact P ¼ 0.0257, Figure 5B). As much as 17 patients who
achieved pCR (100%), all of whom were ctDNA negative,
showed favorable DRFS (Figure 5C). In patients who did not
achieve pCR (n ¼ 43), ctDNA positivity (n ¼ 6;
supplementary Figure S7, available at https://doi.org/10.
1016/j.annonc.2020.11.007) was significantly associated
with worse DRFS (n ¼ 37; HR 10.4, 95% CI 2.3-46.6).
Interestingly, risk of metastatic recurrence in patients who
failed to achieve pCR but were ctDNA negative was similar
to those who achieved pCR (HR 1.4; 95% CI 0.15-13.5).
Positive predictive value and negative predictive value were
67% (4/6) and 93% (50/54), respectively. A landmark anal-
ysis (using T3 as the starting point) was performed and
revealed similar results (supplementary Figure S8, available
at https://doi.org/10.1016/j.annonc.2020.11.007). In an
exploratory multivariable Cox regression analysis, ctDNA-
positivity after NAC was a significant predictor of poor
DRFS (Table 1).
DISCUSSION

In this study, we examined the role of personalized ctDNA
as a predictive biomarker for response and outcome in the
neoadjuvant setting. The cohort included early-stage breast
cancer patients with high risk of recurrence and who were
treated with standard NAC alone or combined with MK-
2206 (AKT inhibitor) treatment in the I-SPY 2 TRIAL.

ctDNA studies in the neoadjuvant setting in breast cancer
have recently been reported28,31-33 (supplementary
Table S4, available at https://doi.org/10.1016/j.annonc.
2020.11.007). Two of the four studies were limited to a
Volume 32 - Issue 2 - 2021
particular breast cancer subtype (i.e. only TNBC28 or only
HER2þ31). Rothé and colleagues31 observed that ctDNA
detection before NAC was associated with decreased like-
lihood of achieving a pCR. McDonald and colleagues32

showed that nonresponding patients have higher ctDNA
levels after NAC compared with those who achieved a pCR.
Two of the studies examined association between ctDNA
and survival,28,31 but none was able to demonstrate the
prognostic impact of residual ctDNA after NAC. To our
knowledge, our work represents the most comprehensive
study on ctDNA detection in all subtypes, before, during,
and after NAC and examined for the first time its association
with response and survival in early breast cancer.

Here, we report on the use of a personalized ctDNA test
informed by each patient’s tumor genotype. We found that
ctDNA is frequently detected in untreated high-risk early
stage population (w70% of patients). The patterns of
change in ctDNA during NAC were significantly correlated
with risk of metastatic recurrence. We also found that
ctDNA testing early during NAC (at 3 weeks) provided
potentially actionable information as persistent ctDNA
identified patients who were unlikely to achieve a pCR,
whereas clearance was associated with improved response.

ctDNA positivity rate at baseline was significantly
different among breast cancer subtypes (HRþ/HER2�: 52%,
HER2þ: 82%, TNBC: 89%). We speculate that the lower rate
of ctDNA positivity in HRþ breast cancer compared with
HER2þ and TNBC is due in part to the lower proliferation
rates (lower expression of Ki6734) in this subtype, as was
observed by Abbosh and colleagues in lung cancer.25

Elucidating molecular and genomic factors predictive of
ctDNA presence in the blood may shed on light on the
biology of ctDNA release and clearance during treatment.

We examined whether ctDNA status at different time
points was associated with risk of metastatic recurrence.
We found that ctDNA-positive patients at T1, T2, and T3
https://doi.org/10.1016/j.annonc.2020.11.007 235

https://doi.org/10.1016/j.annonc.2020.11.007
https://doi.org/10.1016/j.annonc.2020.11.007
https://doi.org/10.1016/j.annonc.2020.11.007
https://doi.org/10.1016/j.annonc.2020.11.007
https://doi.org/10.1016/j.annonc.2020.11.007
https://doi.org/10.1016/j.annonc.2020.11.007
https://doi.org/10.1016/j.annonc.2020.11.007


B

0 1 2 3 4 5 6 7

Time (years)

D
is

ta
nt

 r
ec

ur
re

nc
e-

fr
ee

 s
ur

vi
va

l
(p

ro
po

rt
io

n)

No. at risk

pCR/ctDNA–           HR: reference
non-pCR/ctDNA−    HR: 1.4 (0.15-13.5)
non-pCR/ctDNA+    HR: 14.7 (1.6-132)

pCR/ctDNA−
non-pCR/ctDNA−
non-pCR/ctDNA+

pCR and ctDNA status after NAC (T3)

Groups

log rank P = 0.0001

17 16 15 15 13 8 0 0
37 36 33 31 28 15 0 0
6 5 4 3 2 1 0 0

P
at

ie
nt

s 
 (

n 
=

 8
4)

0 2 4 6

Years since study entry

T0 T1 T2 T3

ctDNA-positive

ctDNA-negative Deceased (n = 8)
Alive (n = 67) Metastasis (n = 10)

Local recurrence (n = 8)

Median follow-up
4.8 years (range: 0.5-6.3)

A
ctDNA status

Time points

13
5

19

6
8

3

3
3

0.00

0.25

0.50

0.75

1.00

non-pCR/ctD
NA−

pCR/ct
DNA−

non-pCR/ct
DNA+

pCR/ct
DNA+

P
at

ie
nt

s 
(p

ro
po

rt
io

n)

HR+HER2–

HER2+

TNBC

n = 6
n = 17

n = 37

n = 0

pCR and ctDNA status after NAC (T3)
by subtype

C

1.0

0.8

0.6

0.4

0.2

0.0

Figure 5. Circulating tumor DNA (ctDNA) and clinical outcomes.
(A) Overview of the ctDNA detection across different time points [T0, baseline/pretreatment; T1, 3 weeks after initiation of therapy; T2, between two treatment
regimens [paclitaxel and anthracycline (AC)]; T3, after neoadjuvant chemotherapy (NAC) prior to surgery]. The right panel shows a swimmer plot depicting the length of
follow-up and events in 75 patients with survival data. The primary endpoint of the study was distant recurrence-free survival. (B) Proportion of subtypes according to
groups based on pathologic complete response (pCR) and ctDNA status at T3. (C) Patient survival stratified based on ctDNA status after NAC (T3) and response to
treatment [pathological complete response (pCR)]. HER2, human epidermal growth factor receptor 2; HR, hazard ratio.

Annals of Oncology M. J. M. Magbanua et al.

236 https://doi.org/10.1016/j.annonc.2020.11.007 Volume 32 - Issue 2 - 2021

https://doi.org/10.1016/j.annonc.2020.11.007


Table 1. Multivariate Cox regression analysis to determine association
between ctDNA positivity after NAC (T3) and distant disease-free survival
(DRFS) while controlling for pCR and subtype

Variable DRFS

Hazard
ratio

Lower
0.95 CI

Upper
0.95 CI

P-value

ctDNAþ versus
ctDNA� at T3

14.9 2.66 83.11 0.0021

pCR versus no pCR 0.4 0.04 4.45 0.4579
HRþ HER2� versus TN 0.8 0.16 3.98 0.7833
HER2þ versus TN 3.6 0.39 33.80 0.2559

CI, confidence interval; HR, hormone receptor; pCR, pathologic complete response;
TN, triple negative.

M. J. M. Magbanua et al. Annals of Oncology
(but not at T0) had significantly inferior DRFS compared
with those who were ctDNA negative. We observed that
PPV and HR increased with time, indicating that the last
time point (i.e. after NAC before surgery) may be most
informative for risk stratification of patients, and thus
potentially help guide treatment in the adjuvant setting.

Our study showed that ctDNA status after NAC can
potentially stratify patients who did not achieve pCR into
low- and high-risk groups (Figure 5C). We found that
clearance of ctDNA after NAC was associated with improved
survival even in patients who did not achieve pCR. If
validated, these findings could have a profound impact on
treatment management in the neoadjuvant and adjuvant
settings.

Recent clinical studies in breast cancer have shown that
additional adjuvant therapy for nonresponders to NAC can
lead to improvements in patient outcomes.35,36 Future
studies should take into account the potential confounding
effects of adjuvant treatment on the prognostic perfor-
mance of ctDNA and other biomarkers analyzed in the
neoadjuvant setting.

Differences in prognostic value of pCR by subtype have
been reported, including its poor association with prognosis
in HRþ breast cancer.21,37 Survival analysis in I-SPY 2
involving 950 patients has shown that pCR and subtype
(including HRþ) were strongly associated with DRFS.23 In
this subset, the individual prognostic impact of pCR and
subtype was not observed, perhaps due to the modest
sample size. Our exploratory survival analysis did show that
ctDNA after NAC was a strong prognostic factor for DRFS.
Further studies in larger cohorts are warranted to examine
the contributions of ctDNA, pCR, and subtypes in predicting
outcomes of patients who received NAC.

The I-SPY 2 schema includes the collection of serial
magnetic resonance imaging (MRI) data during NAC to
assess tumor response.38,39 We have previously analyzed
paired ctDNA and MRI data collected at the same time
points in the same cohort as this present study.40 We found
that MRI-based functional tumor volumeda clinically
established measure of residual disease in the
breast39,41dwas significantly correlated with ctDNA levels at
all time points.40 Furthermore, we found that ctDNA status
after NAC improved the performance of functional tumor
volume as predictor of metastatic recurrence and death.
Volume 32 - Issue 2 - 2021
ctDNA testing could therefore serve as complementary tool
to MRI for risk stratification of patients post-NAC.

A number of technologies for detection of ctDNA have
been developed and are described in detail in a recently
published review.42 Our approach provides several advan-
tages over other methods of ctDNA analysis. The upfront
whole-exome sequencing of primary tumors enables
personalized selection of ctDNA targets that is independent
of driver status. Our assay simultaneously tracks up to 16
patient-specific somatic variants and thus offers a more
robust representation of the heterogeneity of a patient’s
tumor.26,27,30 By contrast, other methods such as droplet
digital polymerase chain reaction8 or BEAMing43 can track
only one to a few somatic variants. Our ctDNA test does
have certain limitations including the inability to detect new
second primary cancers which are often genetically unre-
lated to the original cancer44; also, it will miss novel somatic
variants that arise during tumor evolution in response to
therapy-mediated selection pressures.45

Clonal hematopoiesis of indeterminate potential muta-
tions are potential sources of false positives in sequencing
analyses of cfDNA.46,47 The ctDNA detection approach used
in this study filters out clonal hematopoiesis of indetermi-
nate potential mutations by focusing only on tumor-specific
mutations that were initially detected by whole-exome
sequencing of paired pretreatment tumor and germline
DNA.

In the light of our findings, novel paradigms for ctDNA-
directed treatment can be envisioned in future clinical
trials. The current I-SPY 2 schema provides patients a single
therapeutic opportunity to achieve a pCR48 (Figure 1A). In
the next iteration of the trial, patients will be given options
to receive additional treatment to improve their chances of
achieving a pCR, that is, if the initial agent does not result in
a predicted complete response. For example, the decision
to switch therapy for a patient without an early clinical or
imaging response to a novel therapeutic agent would be
supported if the patient fails to clear ctDNA. By contrast,
patients who clear their ctDNA could continue treatment.
Furthermore, information from ctDNA testing after NAC
may help guide clinical decisions on whether to escalate or
de-escalate treatment in the adjuvant setting. For example,
if clearance of ctDNA is confirmed as a predictor of low risk
of metastatic recurrence, such information can support
treatment de-escalation.

Analysis of pooled serial circulating tumor cell (CTC)
data obtained during neoadjuvant treatment of early
breast cancer revealed that the prognostic impact of CTCs
was the strongest at pretreatment (prior to NAC)
compared with other time points.49 By contrast, our study
showed that ctDNA status after NAC appeared to be the
most important time point for prognostication. While both
blood-based biomarkers display prognostic impact, their
clinical value may not be redundant.50 Further studies that
contemporaneously assess ctDNA and CTCs in the neo-
adjuvant setting are needed to elucidate the relative
contributions of each biomarker in predicting response
and outcome.
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The focus of this study was to examine the clinical sig-
nificance of ctDNA monitoring in the neoadjuvant setting.
The detection of minimal residual disease after surgery is of
great clinical importance and can provide a unique oppor-
tunity for treatment redirection to delay metastatic recur-
rence and improve patient outcomes. We have now
expanded our studies to include postsurgical monitoring of
ctDNA in the adjuvant setting with the focus on residual
disease detection after surgery and recurrence prediction.

In summary, our study shows promise that early response
prediction by highly sensitive ctDNA analysis in high-risk
early breast cancer patients may facilitate a timely and
judicious change in treatment to improve patients’ chances
of achieving favorable long-term outcomes. The I-SPY 2
TRIAL provides an excellent platform to investigate how
personalized ctDNA testing can complement imaging51 and
pathologic evaluation52 of tumor response to fine-tune pCR
as a surrogate endpoint for improved survival. Dynamic
monitoring of ctDNA during NAC could facilitate evaluation
of new agents by providing an early endpoint of treatment
efficacy. Response over time as measured by imaging and
ctDNA in the setting of early (pCR) and late (DRFS) out-
comes will provide a robust framework for elucidating the
potential clinical utility of ctDNA in the neoadjuvant setting.
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